54 research outputs found

    On winning shifts of marked uniform substitutions

    Full text link
    The second author introduced with I. T\"orm\"a a two-player word-building game [Playing with Subshifts, Fund. Inform. 132 (2014), 131--152]. The game has a predetermined (possibly finite) choice sequence α1\alpha_1, α2\alpha_2, \ldots of integers such that on round nn the player AA chooses a subset SnS_n of size αn\alpha_n of some fixed finite alphabet and the player BB picks a letter from the set SnS_n. The outcome is determined by whether the word obtained by concatenating the letters BB picked lies in a prescribed target set XX (a win for player AA) or not (a win for player BB). Typically, we consider XX to be a subshift. The winning shift W(X)W(X) of a subshift XX is defined as the set of choice sequences for which AA has a winning strategy when the target set is the language of XX. The winning shift W(X)W(X) mirrors some properties of XX. For instance, W(X)W(X) and XX have the same entropy. Virtually nothing is known about the structure of the winning shifts of subshifts common in combinatorics on words. In this paper, we study the winning shifts of subshifts generated by marked uniform substitutions, and show that these winning shifts, viewed as subshifts, also have a substitutive structure. Particularly, we give an explicit description of the winning shift for the generalized Thue-Morse substitutions. It is known that W(X)W(X) and XX have the same factor complexity. As an example application, we exploit this connection to give a simple derivation of the first difference and factor complexity functions of subshifts generated by marked substitutions. We describe these functions in particular detail for the generalized Thue-Morse substitutions.Comment: Extended version of a paper presented at RuFiDiM I

    More on the dynamics of the symbolic square root map

    Full text link
    In our earlier paper [A square root map on Sturmian words, Electron. J. Combin. 24.1 (2017)], we introduced a symbolic square root map. Every optimal squareful infinite word ss contains exactly six minimal squares and can be written as a product of these squares: s=X12X22s = X_1^2 X_2^2 \cdots. The square root s\sqrt{s} of ss is the infinite word X1X2X_1 X_2 \cdots obtained by deleting half of each square. We proved that the square root map preserves the languages of Sturmian words (which are optimal squareful words). The dynamics of the square root map on a Sturmian subshift are well understood. In our earlier work, we introduced another type of subshift of optimal squareful words which together with the square root map form a dynamical system. In this paper, we study these dynamical systems in more detail and compare their properties to the Sturmian case. The main results are characterizations of periodic points and the limit set. The results show that while there is some similarity it is possible for the square root map to exhibit quite different behavior compared to the Sturmian case.Comment: 22 pages, Extended version of a paper presented at WORDS 201

    Characterization of repetitions in Sturmian words: A new proof

    Full text link
    We present a new, dynamical way to study powers (that is, repetitions) in Sturmian words based on results from Diophantine approximation theory. As a result, we provide an alternative and shorter proof of a result by Damanik and Lenz characterizing powers in Sturmian words [Powers in Sturmian sequences, Eur. J. Combin. 24 (2003), 377--390]. Further, as a consequence, we obtain a previously known formula for the fractional index of a Sturmian word based on the continued fraction expansion of its slope.Comment: 9 pages, 1 figur

    Privileged Words and Sturmian Words

    Get PDF
    This dissertation has two almost unrelated themes: privileged words and Sturmian words. Privileged words are a new class of words introduced recently. A word is privileged if it is a complete first return to a shorter privileged word, the shortest privileged words being letters and the empty word. Here we give and prove almost all results on privileged words known to date. On the other hand, the study of Sturmian words is a well-established topic in combinatorics on words. In this dissertation, we focus on questions concerning repetitions in Sturmian words, reproving old results and giving new ones, and on establishing completely new research directions. The study of privileged words presented in this dissertation aims to derive their basic properties and to answer basic questions regarding them. We explore a connection between privileged words and palindromes and seek out answers to questions on context-freeness, computability, and enumeration. It turns out that the language of privileged words is not context-free, but privileged words are recognizable by a linear-time algorithm. A lower bound on the number of binary privileged words of given length is proven. The main interest, however, lies in the privileged complexity functions of the Thue-Morse word and Sturmian words. We derive recurrences for computing the privileged complexity function of the Thue-Morse word, and we prove that Sturmian words are characterized by their privileged complexity function. As a slightly separate topic, we give an overview of a certain method of automated theorem-proving and show how it can be applied to study privileged factors of automatic words. The second part of this dissertation is devoted to Sturmian words. We extensively exploit the interpretation of Sturmian words as irrational rotation words. The essential tools are continued fractions and elementary, but powerful, results of Diophantine approximation theory. With these tools at our disposal, we reprove old results on powers occurring in Sturmian words with emphasis on the fractional index of a Sturmian word. Further, we consider abelian powers and abelian repetitions and characterize the maximum exponents of abelian powers with given period occurring in a Sturmian word in terms of the continued fraction expansion of its slope. We define the notion of abelian critical exponent for Sturmian words and explore its connection to the Lagrange spectrum of irrational numbers. The results obtained are often specialized for the Fibonacci word; for instance, we show that the minimum abelian period of a factor of the Fibonacci word is a Fibonacci number. In addition, we propose a completely new research topic: the square root map. We prove that the square root map preserves the language of any Sturmian word. Moreover, we construct a family of non-Sturmian optimal squareful words whose language the square root map also preserves.This construction yields examples of aperiodic infinite words whose square roots are periodic.Siirretty Doriast
    corecore